CONCLUZII

Din argumentare, calcule hidraulice și hidroenergetice tehnico-economice se poate face concluzia că mai suficient la etapa cu volume și debite necesare de consum minime actual este varianta cu ratezarea rotoarelor la pompele existente mici situate la fiecare stație de pompare cu cheltuieli foarte mici, iar pe viitor cînd sa acumula unele finanțe din economisirea cheltuielilor pentru consumul energiei la pomparea apei se poate propune și variantele mai puțin costisitoare cu procurarea numai a 2 pompe IJH1000-180a cu funcționarea numai a 2 sta'ii de pompare Sp1 (pentru apa brută) și Sp 3 (pentru apa potabilă) la care energia specifici nu a de pași e=0.887kW/m3, sau varianta cu pompe existe D1600-90 și D1250-65 cu e=0.953kW/m3.

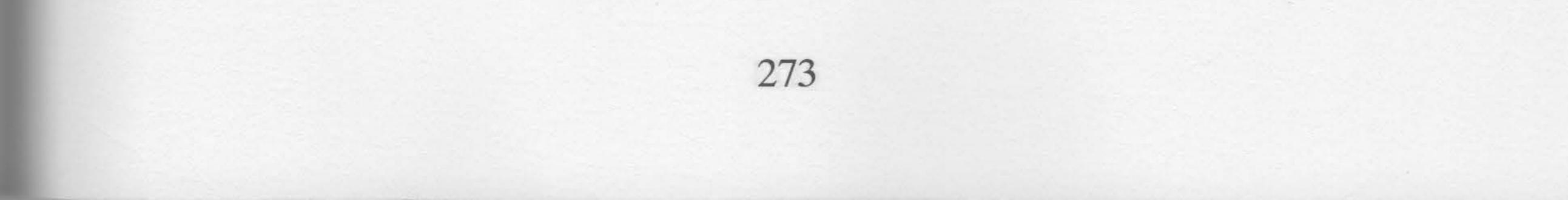
Pentru debite mai mari se vor aplica pompe mari care sînt în fiecare stație de compare cîte 2 agregate (total 8 agregate) cu randament foarte înalt cela mai performante în lume pentru așa debite ca pompe D4000-95 și mai ales cu electromotoare sincrone de marcă *CДH15-39-6* la tensiunea U=10kV cu randamente peste 94 %. Se pot propune și alte variante mai suficiente pentru reducerea consumului de energie cu minim încă 25%. La etapa actuală se propune varianta optimă cu ratezarea rotoarelor a pompelor existente pentru Sp1 și Sp2 de la diametru existent la d=683mm, iar pentru Sp3 și Sp 4 pompele existente D1600-90 este necesar de ratezat rotoarele pînă la d=495mm, ce va reduce consumul de energie cu 25% la pomparea apei pe apeductul Soroca-Balti.

BIBLIOGRAFIE

Burchiu V., Santău I., Instalații de pompare. Editura Tehnică. București. 1982.,p.464
 Alexandrescu O. Stații de pompare. Politehnium. Iași. 2003, p.268

CZU 631.672.2

OPTIMIZAREA FUNCȚIONĂRII STAȚIILOR DE POMPARE PE APEDUCTUL SOROCA – BALȚI

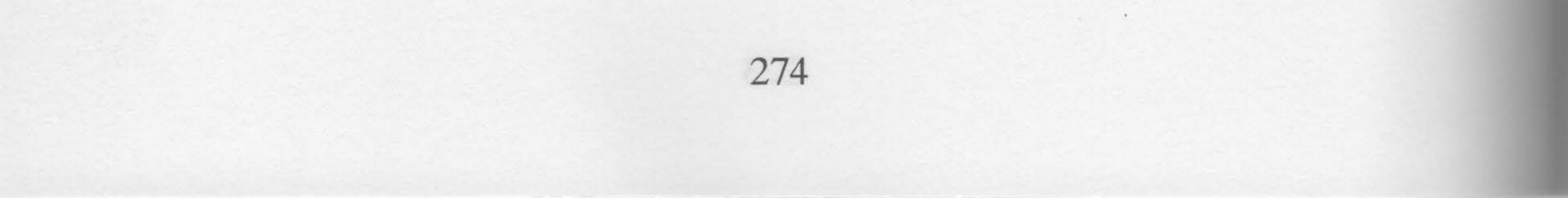

P. PLEŞCA, R. CEBAN, V. MOCREAC Universitatea Agrară de stat din Moldova

Abstract: Increase of generation hidraulic power meams optimization. of pumping station. Measurement procedure of main parametrs of pumping units and optimazisaon of pumping station of the Soroca-Balti water suplz szstem. Evaluation of the measurement results, pumping regimes efficiencies of the energies

Key words: the optimazisaon of pumping, the measurement results, the regimes efficiencies

INTRODUCERE

Apeductul Soroca-Bălți sa dat în exploatare în anul 1985 cu scopul alimentarii cu apă a or. Balți, Soroca, Florești și în perspectivă alte localitați ca or. Rîșcani, Sîngerei, Telenești, Fălești, Drochia și o multime de sate pe aceste trasee. Reeșind



din date în " STRATEGIA privind aprovizionarea cu apă și canalizarea localităților din Republica Moldova"(Hotărîrea guvernului nr.662 din 19 iunie 2007, pag.20, tabel, poz.8) referitor la Capacitatea Apeductelor Grupate "Soroca" unde se descrie, valoarea lui de Proiect-182000 m3/24h și reală care acum se folosește-40000m3/24h, cu perspectiva aprovizionarii a 233 localitați cu o populație de 827400 persoane. Studiul al multor proiecte executate (aprobate și verificate de Serviciu de Stat VEPC) de "AcvaProiect", "Iprocom" ș.a. istituții de proiectare în ultimul timp cu perspectiva dezvoltării a apeductului se poate prezenta în tabelul 1: Tabelul 1: Date despre consumatori de apă și în conductele din Apeductul Soroca-Bălți

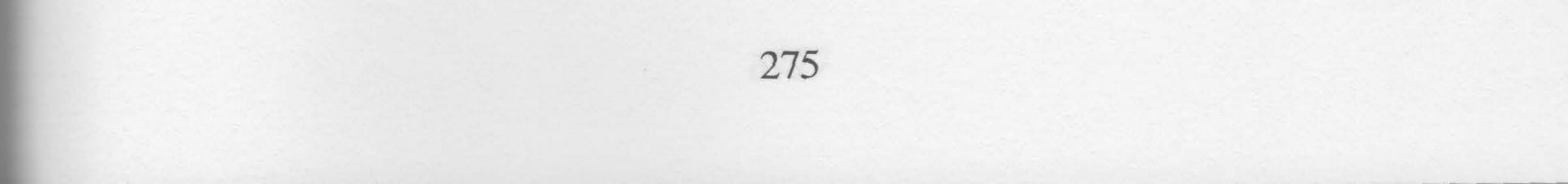
Localitate	Bălți	Soroca	Florești	Rîşcani	Sîngerei	Telenești	Fălești	Drochia	AcvaN
Pers.,mii; Acum	122,5	34,7	15,1*	11,4*	12,5*	6,5*	15,2*	17,5*	160
Pers., mii; Viitor	123	35	15,3	11,5	12,7	6,8	15,4	17,8	827.4
Dedit,m3/24h;A	21200	4200	1630*	430*	870*	550*	1100*	1810*	25400
Debit,m3/24h;V	45000	12200	5200	4300	1942	1700	5200	6100	90000
Volum Rez,m3,A	32000	12000	1000*	3000*	1000*	1000*	1000*	1000*	61000^
Volum Rez,m3,V	32000	12000	2000	4400	2000	4000	5200	4000	83000^
Lungim. Ad,km;A	-(170)	1,5	-100-0	- Listaisv	-2000/000	- 32 1	-totos (-0515	71,9
Lungim. Ad,km;V	8(190)	1,5	15,8	36,63	22,28	32,3	32	20	80
Diametr.cond,mm	1000	400	400	400	315/250	250/200	400	400	1200
Cote teren,m;	90-160	45-170	90-150	140-180	70-140	60-140	70-150	170-220	48-303
Cons. En.kW/m3	1,9*	2,9*	1,2*	2,2*	1*	1,3*	1,4*	1,6*	1,4

*- nu se refera la preluarea apei din Ad Soroca-Balti; ^- total cu volum rez.17000m3 la Ad Soroca-Bălți.

Se poate sublinia din tabelul mai sus că debitul total ăn apropiată perspectivă este egal cu 90000m3/24h(care se confirmă cu aceeași valoare dată și în articolul cosacrat aniversării institutului "Acvaproiect" 45 de ani in serviciul țării pe pag.18 în Revista Apelor Nr 11anul 2010 (copia să anexează). Capacitatea Apeductului conform proiectului e de 180000m3/h (in datele autorului de Proiect «Гидропроект» Харьков). Benefeciarul acum în Sarcina Tehnică cere minim 30000 și maxim 50000m3/24h. Precum reeşind din datele cercetărilor "Укркоммунниипроект" г. Харьков «Рекомендации по интенсификации работы системы водоснабжения г. Бельцы, 1989 г. prezentat în pag.5 subliniază că la acel moment numai în or. Bălți consumul mediu era de 90 mii m3/24h. Ca sursă acest apeduct folosește apa din r.Nistru (cota 48m) preluată cu Stația de pompare (Sp) 1 care pompează în Sp2 amplasată la 3,4km în apropierea s.Cosauți, deunde ea este transportată spre decantorul Stației de tratare a apei (STA) situată la o distanță de 5,1 km. Pe tot traseul de la r. Nistru pînă la STA apa se transportă pe 2 conducte din oțel cu diametrul 1000mm. Dupa tratare apa potabilă se adună în 3 rezervoare fiecare cîte 3000m3 (total 9000). După date din aceste rezervoare o parte de apă nimerește pe 2 conducte cu d=400mm (spre 2 rezervoare fiecare cu volum de 2000 m3(total 4000) distanța pînă la primul e 1 km, sub gravitație în sistemul de alimentări cu apă (AA) Soroca. Mai mare parte a debitulul din aceste rezervoare (STA) amplasate pe lîngă Sp3 se pompează spre SP 4 amplasată la o destanță de 9 km prin o conductă cu d=1200mm în 2 rezervoare fiecare cu volum de 2000m3 (total 4000). Dupa date acum din aceasta conductă sub presiune concomitent se mai preea apa pentru partea

de sus a or. Soroca ca minim tot din 2 locuri pe conducta de 400mm (la o distanță de 0,5 km) se preea apa în 2x2000=4000m3 și mai este un loc unde apa se preea de conducta de 100mm. (Aici trebuie de subliniat-că preluarea apei din aceasta conductă magistrală pentru or. Soroca în timpul funcționării Sp 3 pentru or Balți spre rezervorul Sp 4 de sus duce la micșorarea randamentului pompării, adica nu este suficient). Din rezervoarele (2x2000=4000m3) a Sp4 apa se transmite la o distanță de 3,5 km prin o conductă cu d=1200mm la rezervoarele de sus (la cota303m) cu volum 2x2000=4000m3, de unde sub gravitație nimerește în rezervoarele 2x6000=12000m3 (cota 170m) or. Balți prin conducta cu d=1200mm(L=20,3km) și cu d=1000mm (L=25,9km) și mai departe din aceste rezervoare apa acum prin gravitație/pompare se mai acumulează în rezervoarele cu volum de 20000m3 amplasate în partea opusă a or.Bălți L= 8km, la cota 190m.

Pentru studiu sau folosit - Proectul (Nr.488-23-16) de baza executat de «Гидропроект» Харьков, 1980) și "Укркоммунниипроект" г.Харьков «Рекомендации по интенсификации работы системы водоснабжения г. Бельцы, 1989 г. - Sarcina Tehnică pentru Proict de Execuție a reconstrucției Stațiilor de pompare 1,2 3,4 a apeductului Soroca-Balți, dată de ÎIS"Acva-Nord" din 21.04.2010. (Техническое Задание на проектирование) - Proces verbal al ședinței Consiliului Tehnic al Agenției "Apele Moldovei" din 25 mai 2010 - Протокол заседания технического совещания института "Acvaproiect" по объекту «Reutilitarea stațiilor de pompare a sistemului aprovizionare cu apă Soroca-Bălți"

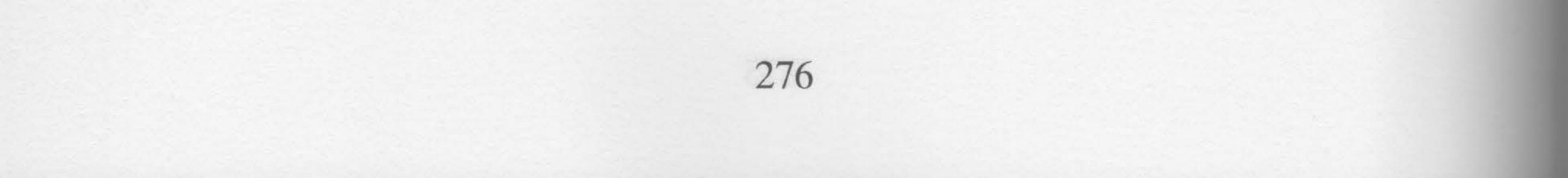

-rezultatele masurărilor Nr1 debitului la Sp 4 cu debitmetru ultrasonic compiuterizat)pe dat de 16.09.2010.

-rezultatele masurărilor Nr 2 debitului și presiunii concomitent pe traseu la sectorul Elizaveta spre reyervoarele din or. Bălți pe data de 15.10.2010.

- rezultatele expertizei proiectului de execuție a IP,,Acvaproiect" «Reutilitarea stațiilor de pompare a sistemului aprovizionare cu apă Soroca-Bălți". - Reeșind din " STRATEGIA" privind aprovizionarea cu apă și canalizarea localităților din Republica Moldova" (Hotărîrea guvernului nr.662 din 19 iunie 2007.

MATERIAL ȘI METODA

Reeșind din planurile de situație la fiecare Sp, desenele proiectului inițial referitor la variația nivelurilor în r. Nistru la priza Sp1, cotele axelor pompelor la fiecare Sp, variația nivelurilor în rezervoarele pe lîngă Sp dupa datele masurărilor reale petrecute de autor dupa manometrele la intrare instalate pe conducta de aspirație la Sp2 și Sp3 (foto) și piezometre la Sp1 și Sp4 (foto)- sa precizat componentele înălțimii geometrice totale la fiecare agregat de pompare: înalțimi geometrice de aspirație față de axa pompei și pentru determinarea componentei la refulare a inălțimii geometrice apreciate prin masurări reale sa observat indicele manometrilor pe colectoare imediat dupa oprirea pompelor, care indica valoarea reala a coloanei de apă în statică la poziția "0" a manometrului și apoi aceasta marime se readuce la axa pompei. Dupa date din proeictul inițial și conform cerințelor referitor la agregatele de pompare pentru categoria 1-toate pompele trebuie să fie sub



nivel, adica cota minimă a apei la aspirație ca limită nu poate fi mai jos de poziția axei pompei. Pentru valorile maxime posibile la aspirație sa reeșit din sursa de preluare a apei pentru fiecare Sp, care sau masurat cu aceleași mijloace pentru nivele (adîncimi) maxim admise inrezervoare pentru Sp3 și Sp4, pentru Sp 2 presiunea maxima la aspirație(întrare) se limitează cu presiunile ce sînt indicate maxim admise pe vane la Sp2 vana 3049156p cu D= 800MM și P= 1.0 MPa (10 at=100m) și luînd în vedere duritatea corpului pompei la aspirație dat în cartea tehnică a pompei, de exemlu pentru pompa D2000-100 presiunea admisă maxima e de 6,5 at (65m) pentru pompa existentă la Sp 3, iar D4000-95 este de 8 at și pompa D1600-90 la Sp3,4 este de 4,5 at (45 m), adica pentru situații posibile la toate Sp probleme tehnice nu pot aparea din acest punct de vedere (Şaragov I. Pleşca P. Țerna I., 2001)

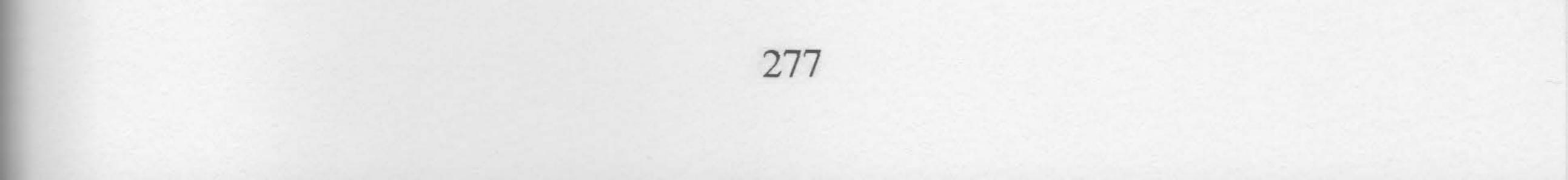
Pentru rezervoare nivelul maxim sa stabilit din poziția cotei conductei ce evacură surplusul de apă în rezervor la umplerea lui stabilit dupa proiectul tipic ca pentru rezervoare dreptunghiulare, care sînt real amplasate de volum fiecare de 3000m3 (24x24m) cu h=4,8m la Sp3 și la Sp4 și sus la cota 303m de 2000m3 (24x18) cu h=3,6m iar la întrare în or. Bălți. de 6000m3 (36x36) cu h=4,8m. Pentru Sp2 la refulare pentru inalțimea geometrică sa luat cota conductei de evacuare a surplusului de apă in camera de amestec 181 m. Reeșind din măsurări petrecute și date inițiale a proiectului sau determinat valorile și varațiile inalțimilor geometrice/geodezice la aspirație, refulare și totale pentru agregatele de pompare existente prezentate mai jos cu o precizie suficientă pentru calcule hidraulice. (Țerna I. Pleșca P. Șaragov I., 2002)

Determinarea înălțimilor geometrice necesare de pompare la Sp,1, 2,3, 4 și sarcinilor hidraulice libere a AdSB este prezentată în tabelul 2 mai jos. Tabelul 2: Cotele caracteristice ale statiilor de pompare.

Obiect hidrotehnic	Cota teren,m	Cot ax p,m	Cota maximă,m	Cota minimă,m	Cota medie,m
Sp1, intrare	61.3	46.7	51	47	49
Sp1, ieșire la Sp2	101.3	102.7	103	103	103
Înalţ.geom, Hg1,m		56	Hg1min=52m	Hg1max=56m	Hgmed=54m
Sp2, întrare	101.5	102.7	103	103	103
Sp2, camera ames	175.5		181	181	181
Înalţ.geom, Hg2,m	74		Hg1min=74m	Hg1max = 74m	Hgmed=74m
În.geom. Hg1+2,m		Inderse and	Hg1min=126m	Hg1max=130m	Hgmed=128m
Sp3, întrare rezerv.	174.6	172.0	176m	172	174
Sp3, ieșire rez. Sp4	234.3	236.0	240	236	238
Înalț.geom, Hg3,m		64	Hg1min=60m	Hg1max = 68m	Hgmed=64m
Sp4, întrare rezerv.	234.3	236.0	240	236	238
Sp4, ieșere rez sus	303.0	THE OWNER	305	301	303
Înalț.geom, Hg4,m			Hg1min=61m	Hg1max=69m	Hgmed=65
Sp4,umpl cond sus	310		310	310	310
În.geom ump, Hg, m	SIGNER DEL CLO	Streep El	Hg1min=70m	Hg1max = 74m	Hgmed=72m
Rezerv 1,2 Bălți	Section 25 Marsh	miennin in	TOOM AVENDAR	A suminous of	
Rezerv 170m, Bălți	170		172	168	170
Rezerv. Sus, -Hg	303		Hg1min=129m	Hg1max = 137m	Hgmed=133m
Rezerv 190m, Bălți	190		192	188	190
Rezerv. Sus, -Hg	303		Hg1min=109m	Hg1max=117m	Hgmed=113m
Pomp. dircte Sp3+4		A CHERREN			
Îngeom, Hg3+4,m	303	172/236	301-176=125	305-172=133	303-174=129

În.g ump, Hg3+4,m	310	172/236	310-176=132	310-172=140	310-174=136
Cond ocol, Tep-Hris					
Sp3, umpl cond Hris	260	172	260-176=84m	260-172=88m	260-174=86m
Sp3, rez.170m, Bălți	170	172	168-176=-8	172-172=0	170-174=-4
Sp3, rez.190m, Bălți	190	172	188-176=12	192-172=20	190-174=16

Aceste date vor fi aplicate la calculul sarcinii de popare la diferite regimuri dupa debit și la diferite scheme de pompare de la situții existente la cele variante propuse de autorul Proiectului alternativ de optimizare a funcționării cu reducerea nr SP pînă la 2-3 trepte și recuperarea energiei hidraulice pe acest traseu de apă.

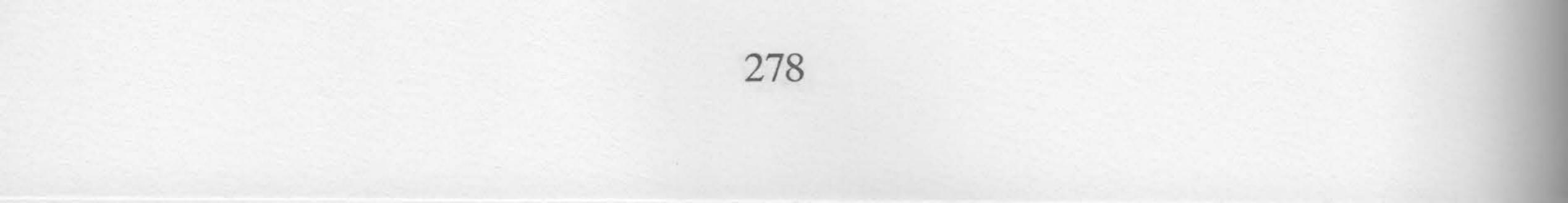

REZULTATE ȘI DISCUȚII

Actualmente în stațiile de pompare sînt amplasate agregate de pompare cu utilaj performant, compus din pompe (de tip "D" cu dublu flux) de înalt randament peste 80% și electromotoare sincrone la tensiune 10kV cu un randament peste 94%, adica Randamentul Agregatelor este: între 83,6-77.1% (Ra=RpxRe) care e suficient. (Pleșca P. Lichii A. Vîrlan V., 2005)

Alt ceva dacă Beneficiarul nare competență de al folosi util pentru unele regimuri cu consumuri mici de apă. Componența agregatelor existente la stațiile de pompare, parametrii de bază și diapazonul admis la ratezare.

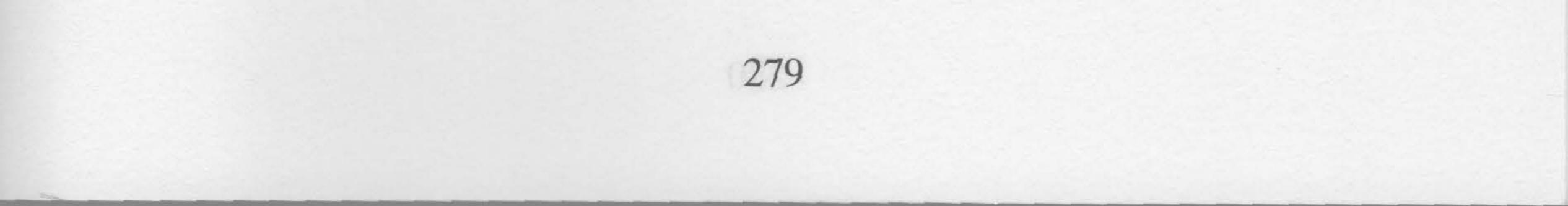
Sp 1, diapaz dr	Pompa	D,mm	Np,kW		Electromotor	N, kW	n,r/mi	Cos/R, %	In, A
	D2000-100	820	644	82	СДН14-49-6	800	1000	0,9/94	54.5
Ap2,d 816-700	D4000-95a	780?	1000	86.5	СДН15-39-6	1250	1000	0,9/94.4	85
Ap3,d 816-700	D4000-95a	760	955	86.5	СДН15-39-6	1250	1000	0,9/94.4	85
	Contract States	THE STATE		10801	conect "stea"				
Sp 2		125	1003-1-1						
Ap1,d 816-700	D4000-95a	760	955	86.5	СДН15-39-6	1250	1000	0,9/94.4	85
Ap2 d 816-700	D4000-95	825	1170	88.5	СДН15-39-6	1250	1000	0,9/94.4	85
Ap3,d 820-700	D2000-100	820	644	82	СДН14-49-6	800	1000	0,9/94	54.5
	ALCONT STATE		1225.2	1 Section	conect "stea"				
Sp 3				128.611					
4	D4000-95a	825	1170	86.5	СДН15-39-6	1250	1000	0,9/94.4	85
Ap2,d 816-700	D4000-95a	760	955	86.5	СДН15-39-6	1250	1000	0,9/94.4	85
Ap3,d 540-460	D1600-90	540	520	81	A4-85/43-4	630	1450	0,87/94.5	44
Sp 4									
Ap1,d 540-460	D1600-90	540	520	81	A4-85/43-4	630	1450	0,87/94.5	44
Ap2,d 816-700	D4000-95b	720	850	86.5	СДН15-39-6	1250	1000	0,9/94.4	85
Ap3,d 816-700	and the second design of the s	the second design of the secon	955	86.5	СДН15-39-6		1000	0,9/94.4	85

Aceste agregate existente fără schimbarea agregatelor (nici a pompelor, nici a electromotoarelor și nici a transformatoarelor – cum se propune de Proiect "Acvaproiect") permite de-a pompa de la Sp1,Sp2 la STA de la minimum Qmin=1600m3/h (D2000-100b) pînă și 2500m3/h (D4000-95b) de la un agregat nu mai spunem de acele valori mai mari necesare și pentru Sp3, Sp4 de la minimum Qmin=1300m3/h (D1600-90a) pentru sarcin necesare la acest regim de pompare. Adica dacă ne referim la cerințele date de Beneficiar în Sarcina Tehnică din 21.04.2010, pentru Sp.1, 2- Volumul dorit V=30000m3/1600=19h de lucru se asigură cu un agregat existent.


Iar pentru Sp3, 4 la cererea de V=26000m3/1300=20h de lucru. Precum toate modificarile constă numai în ratezarea a 4 (patru) rotoare la un strung de așchiere de marca 1A-65 (DIP500) cu cuțit de tip BK 8 cu un cost de lucru ce nu depașește pentru ratezarea unui rotor 1000 lei (dupa datele serviciului hidromecanic unde se execută aceste simple modificări din "Apă-Canal Chișinău" cu lucrîri preliminare de demontarea capacului superior al pompei și scoaterea rotorului. Ca rezultat se poate face concluzia ca Costul nu va depași 5 mii lei. Sînt posibile și alte modificari pentru a largi diapazonul de debite, presiuni(sarcini de pompare) pentru a spori randamente mai superioare, pentru ce este necesar de folosit alte motoare cu acele pompe existente numai la turații mai joase sau alte pompe cu aceleași electromotoare și se poate folosi pentru regimuri cu debite și potențialul transformatoarelor existente la tensiunea de 0,4kV care sănt date în tabel.

Potențialul transformatoarelor existente la stațiile de pompare a ÎIS "AcvaNord" și aplicării lor.

Transformatoare	Tensiune, kV	Putere transf.,kVA	Putere utilă,kW	Aplicare actuală	Aplic. propusă
Sp1					
TCB 63/0,5	10	12000	9600	Pompare	Pompare
	0,4	2x250=500	2x200=400	necesităti auxil	și pompare
Total, Sp1		12500	10000		
Sp2	to valo ded	Live and a state of the	HILL BE DEFENS		LOG STRATED.
TCB 63/0,5	10	12000	9600	Pompare	Pompare
	0,4	2x160=320	2x128=256	necesităti auxil	și pompare
Total, Sp 2	0001-1065	12320	9856	D4000-1501 28	008-0-18-b.Ser
Sp3	AND THE REAL	a weller have	0.6 1 - cc2 - 1 0.0	NO LESSONALL	ANA-ALS LACE
TCB 63/0,5	10	12000	9600	Pompare	Pompare
A BOARD AND AND AND AND AND AND AND AND AND AN	0,4	2x630=1260	2x504=1008	necesităti auxil	şi pompare
Total, Sp 3	DUCK STORE	13260	10608	The second second	
Sp4	0004 1085	1.0.20135102.01.3	88 F 07 [1]	South Service of	£ 12-11-2 6 1-19
TCB 63/0,5	10	12000	9600	Pompare	Pompare
	0,4	2x160=320	2x128=256	necesităti auxil	și pompare
Total, Sp 4		12320	9856		
Total, Sp1,2,3,4	1039 (A. T. 1025)	50400 kVA	40320 kW	10-10-02-0301-01	Callen Z. La tas


Transfomatoarele de joasă tensiune U=0,4kV sînt secționate și pot fi cuplate în paralel. Precum actualmente sarcina lor nu depașește nici o patrime și se aplica pentru iluminare, deschiderea/inchiderea vanelor și altele. Adica se pot folosi la funcționarea unor agregate la U=0,4kV cu sarcini disponibile ca surplusul la cel folosit. Lista pompelor și electromotoarelor, care pot fi filosite în combinație cu unul existent în SpAN.

Din gama parametrilor la randamentul optimal a agregatelor din analiza tabelului dat mai sus, se poate face concluzia ca aplicația pompelor și electromotoarelor existente numai prin modificarea simplă ca ratezarea rotoarelor sau cu variația turației la pompe existente prin schimbarea numai motoarelor se poate asigura debitele minime necesare fără surplusul de sarcină de pompare la fiecare stație de pompare. Pentru debite minime necesare se poate util de aplicat pomparea apei numai cu 2 (două) din 4 (patru) stații de pompare, iar pentru aceasta trebuie de modificat puțin schema de pompare prin conectarea directa a conductelor de refulare de la Sp3 cu colectorul de aspirație la Sp4, adica excluderea rezervoarelor existente în timpul pompării spre rezervor de sus.

Pompa	Q,m3/h	H,m	n,rot/min	Elect.motor,10kV	Ne,kW	Există la Sp Nr	Aplicăt în
D1600-90	1600	90	1450	A4-85/43-4	630	la 3 și 4-electromotor	Sp3+
D1250-125	1250	125	1450	A4-85/43-4	630	Trebuie numai pompă	Sp1s, Sp3s
ЦН1000-180	1000	180	1450	A4-85/43-4	630	Trebuie numai pompă	Sp1 și Sp3
LIH1000-180	900	157	1450	ДА304-85/43-4	500	Trebuie pompă, el/mot	Sp1 și Sp3
D1600-90	1000	40	980	AO3-355M-6	136/160	El/motor nou la 0,4kV	Sp2, 4s
D2000-100	2000	100	1000	СДН14-49-6	800	la 1 și 2- electromotor	Sp1+
D6300-27	3000	65	1000	СДН14-49-6	800	Trebuie numai pompă	Sp1, 2s
D2000-100a	1900	88	980	A4-85/54-6	630	Trebuie el/motor,10kV	Sp1, 2
D2000-100b	1800	80	980	A4-85/54-6	630	Trebuie el/motor,10kV	Sp1, 2
D3200-75a	3000	65	1000	СДН14-49-6	800	la 1 și 2- electromotor	Sp1, 2s
D2000-100	1500	58	730	ДА304-85/62-8	400	Trebuie el/motor,10kV	Sp2s
D4000-95a	3700	82	1000	СДН15-39-6	1050	La Sp1,2,3,4	Sp1,3+
D4000-95	3200	50	730	СДН-14-59-8	495/630	Trebuie el/motor,10kV	Sp2,4s
D4000-95a	3000	45	730	A4-85/62-8	425/500	Trebuie el/motor,10kV	Sp2,4s
de maiour						s- lucrează în serie	
D2000-21	2000	21	980	4A355S6	124/160	El/motor 0,4kV	Sp2, 4s
D1250-63	1250	63	1450	5AH355A4	290/315	El/motor 0.4kV	Sp2, 4s
D1250-63a	1100	52.5	1450	5AMH315M4	220/250		Sp2, 4s
D1250-63b	1050	44	1450	5AMH315S4	175/200	El/motor 0,4kV	Sp2, 4s
D1250-65	800	28	980	5AMH280M6			Sp2, 4s
D1250-125a	1150	102	1450	A4-400x4			Sp1, 3
D1250-125b	1030	87	1450	the second s			Sp1, 3

Din combinațiile ale pompelor se poate observa, că debitele minime de la Sp1.2 și Sp3,4 se pot asigura de la 1000 pînă la 1500m3/h, cu alte combinații de la 1600 pînă la 2200m3/h și cu pompele mari de la 2500 pînă la 3000m3/h (se ea în vedere funcționarea numai cîte un agregat la fiecare Sp. Lucru în paralel a acestor grupe de pompe vor da posibilitatea de a mari debitul pînă la 5000m3/h. Precum cîte un agregat mare la fiecare stație de pompare rămîne în rezervă. Unele agregate cu putere pînă la 250 kW Sp1,2,3 (500),4 vor funcționa la tensiunea de 0,4kV reeșind din capacitatea existentă a transformatoarelor la fiecare stație. Autorul propune ca aceste agregate în primul rînd de la Sp 1 spre Sp2 se fie apa pompată prin corpul pompei de capacitate mare trecînd prin supapa de reținere și la oprire să păstreze manevrarea fix în așa mod cum se proceda anterior, mai ales că vana permite presiuni admisibile pînă la 1MPa=10 at=100mca, adica la regimul cu numai o pompă la Sp1. Referitor la volumele posibile asigurate în 24h atunci ele vor fi de la minim posibile: Vmin=1000x24=24000m3 pînă la maxim Vmax=5000x24=120000m3 ce corespunde capacității Stației de tratatarea apei dupa datele«Гидропроект» Харьков, 1980) și "Укркоммуннии- проект" г. Харьков «Рекомендации по интенсификации работы системы водоснабжения г. Бельцы, 1989 г. În prealabil pentru argumentarea parametrilor de bază : debitele și sarcinile necesare de pompare la fiecare stație de pompare, sau studiat regimurile posibile conform normativelor în vigoare începînd de la cele minime/maxime (cerute în sarcina Tehnică de Beneficiar) pînă la cele stabilite în Proiectul de bază și alte aprobate pentru perspectivă conform Strafegiei. Pe baza acestor regimuri cu volume necesare zilnice (24h) sau construit grafice de consum al apei pe baza distribuirii prezentate în proiectul de bază «Гидропроект» dat în fig.1

Distribuirea debitului Q pe ore T in zilele cu diferit consum de apa la Ad Soroca Balti

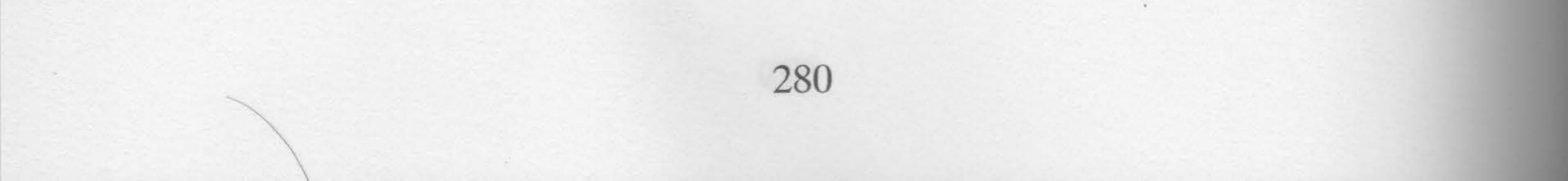
Fig.1. Distribuirea debitelor pe ore la diferite regimuri de consum al apei, Ad Soroca-Bălți

CONCLUZII

Optimizarea stațiilor de pompare se poate petrece cu utilaj existent cu unele modificări.
 Trebuie la maxim de folosit volumele rezervoarelor situate pe apeduct și rețea de apă.

BIBLIOGRAFIE

- 1. Şaragov I. Pleşca P. Țerna I. Încercări normale și reglarea pompelor dinamice. Îndrumar metodic.UTM. Chișinău. 2001. p.60
- Terna I. Pleşca P. Şaragov I. Pompe, ventilatoare şi suflante. Fenomenul de cavitație în pompe centrifuge Îndrumar metodic. UTM. Chişinău. 2002. p.63
 Pleşca P. Lichii A. Vîrlan V. Eficiența utilizării energiei îstațiile de pompare din SA "Apă-Canal Chişinău" Conferința internațională" Energetica Moldovei-2005" Acad. de Ştiinşă a Moldovei. Chişinău. 2005, p.9.


CZU 532.5:537+536.24:537

TIMPUL DE RELAXARE ELECTRICĂ A MEDIILOR DISPERSE DE CONDUCTIVITATE SLABĂ.

T. GROSU, L. CIOINAC

Univsitatea Agrară de Stat din Moldonz

Abstract. The communication is devoted to the theoretical investigation of one of the main electricophysical parameters of dispersed dielectric media (emulsions, suspensions, etc.), name electrical relaxation time τ , equal to the ratio of the absolute permeability ε to the electrical conductivity σ of the medium. The parameter τ is a function of the type $\tau = \tau(c, \varepsilon_1, \varepsilon_2, \sigma_1, \sigma_2)$ where c is the concentration of the dispersed phase. The indices "1", "2" refers to the dispersed and

